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Outline

Data Availability/ Overview of Current
Research

— Surface Data
— Satellite Data

Possible Research Directions
Observations Needed for Models
Discussion Points
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de Boer et al. (2009)
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Lidar Backscatter
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Low Cloud Liquid Water Amount
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SHEBA Winter Atmospheric Temperature and Humidity Structure
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CALIPSO CAM4 CALIPSO simulator CAMS5 CALIPSO simulator
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Possible Research Directions

* Model Improvements
to Reduce

—Uncertainty in the
fluxes associated
with radiative
forcing

—Spread in climate
projections




Aerosols

Wang et al. (2012)



Reducing Uncertainty in Climate Projections

Current GCMs’ Unrealistic Negative Feedback in the Arctic
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Observations Needed
to Improve Climate
Models




Energy Fluxes over open water compared
to Energy Fluxes over sea ice
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On the Relationship between Thermodynamic Structure and Cloud
Top, and Its Climate Significance in the Arctic
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ABSTRACT

Cloud and thermodynamic characteristics from three Arctic observation sites are investigated to understand the
collocation between low-level clouds and temperature inversions. A regime where cloud top was 100-200 m above
the inversion base [cloud inside inversion (CII)] was frequently observed at central Arctic Ocean sites, while
observations from Barrow, Alaska, indicate that cloud tops were more frequently constrained to inversion base
height [cloud capped by inversion (CCI)]. Cloud base and top heights were lower, and temperature inversions
were also stronger and deeper, during CII cases. Both cloud regimes were often decoupled from the surface except
for CCI over Barrow. In-cloud lapse rates differ and suggest increased cloud-mixing potential for CII cases.

Specific humidity inversions were collocated with temperature inversions for more than 60% of the CCI and
more than 85% of the CII regimes. Horizontal advection of heat and moisture is hypothesized as an importei]

rocess controlling thermodynamic structure and efficiency of cloud-generated motions. The portion of CII
clouds above the inversion contains cloud radar signatures consistent with cloud droplets. The authors test the
longwave radiative impact of cloud liquid above the inversion through hypothetical liquid water distributions.
Optically thin CII clouds alter the effective cloud emission temperature and can lead to an increase in surface
flux on the order of 1.5 W m ™ ? relative to the same cloud but whose top does not extend above the inversion
base. The top of atmosphere impact is even larger, increasing outgoing longwave radiation up to 10 W m 2.
These results suggest a potentially significant longwave radiative forcing via simple liquid redistributions for
a distinctly dominant cloud regime over sea ice.







Discussion Points

* Model Improvements

— Uncertainty in energy fluxes
* Aerosols (transport, direct, and indirect effects)

* Tighter coupling between the component models’
radiation code

— Climate Projections

* Examine areas where the modeled mean state relates
to differences in climate projections

e Correct any biases in the mean state

e Observations Needed

— Aerosols, energy fluxes and cloud profiles over
open water, advection, precipitation



